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1.0 BACKGROUND

This project is part of a larger, ongoing research effort at Cornell University to develop
theory and simulation methods suitable for predicting crack turning and arrest in integral
aircraft structures. In addition to the documents included with this report, documentation
of work completed throughout the entire project, including work accomplished after the
period of performance for the present program, will be compiled in the form of a doctoral
dissertation planned for completion by August 2000.

2.0 ACCOMPLISHMENTS

A key accomplishment of the present program was the development and implementation of
the second-order linear-elastic crack turning theory with fracture toughness orthotropy into
the FRANC2D fracture simulation code. An early version of the code has already found
use in analyses performed under the Integral Airframe Structure (IAS) Program (Contract
NAS1- 20014, Task 34, ending November, 1998). Correlation of crack path predictions
with observed trajectories in test specimens for a variety of test conditions was much better
than would be expected of any other known theory. Since that time, the code has been
further improved to reflect new T-stress calculation techniques described in Attachment #1,
among other improvements.

In a collaborative effort, the code driving the second-order orthotropic crack turning theory
was ported to the shell version of FRANC3D to study crack turning and flapping of narrow
body fuselage structure under the aging aircraft program.

A theoretical estimate of the characteristic length, r,, associated with crack turning, has been
developed based on the concept of plastic instability. This parameter is necessary for
application of the 2" order theory. This work is also described in Attachment #1.

With regard to the turning criterion, it has been found that a very similar angle prediction to
the 2nd order theory max stress theory can be obtained based on elastic CTOD theory. The
solution is sensitive to the T-stress (in the same manner as the maximum tangential stress
theory), and to the length of the crack extension (which is roughly equivalenttor,). A
description of this finding and a proposed extension to the elastic plastic case is described
in Attachment #2.

Test plans and specimens were also prepared under the present program for testing under a
later segment of the overall effort, and an interpolating function for 3D fracture toughness
orthotropy was also developed to support future development of a 3D crack turning
simulation capability (applicable to thick structures).
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ABSTRACT

In the course of several years of research efforts to predict crack turning and ﬂappmg in
aircraft fuselage structures and other problems related to crack turning, the 2™ order
maximum tangential stress theory has been identified as the theory most capable of
predicting the observed test results. This theory requires knowledge of a material specific
characteristic length, and also a computation of the stress intensity factors and the T-stress,
or second order term in the asymptotic stress field in the vicinity of the crack tip.

A characteristic length, r_, is proposed for ductile materials pertaining to the onset of plastic
instability, as opposed to the void spacing theories espoused by previous investigators.
For the plane stress case, an approximate estimate of r_ is obtained from the asymptotic
field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR).

A previous study using of high order finite element methods to calculate T-stresses by
contour integrals resulted in extremely high accuracy values obtained for selected test
specimen geometries, and a theoretical error estimation parameter was defined. In the
present study, it is shown that a large portion of the error in finite element computations of
both K and T are systematic, and can be corrected after the initial solution if the finite
element implementation utilizes a similar crack tip discretization scheme for all problems.
This scheme is applied for two-dimensional problems to a both a p-version finite element
code, showing that sufficiently accurate values of both K| and T can be obtained with fairly
low order elements if correction is used. T-stress correction coefficients are also developed
for the singular crack tip rosette utilized in the adaptive mesh finite element code
FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress
intensity factor correction was not attempted for FRANC2D because it employs a highly
accurate quarter-point scheme to obtain stress intensity factors.
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1.0 INTRODUCTION

Crack turning has been recognized as a potentially important crack arrest mechanism for
pressurized aircraft fuselage structure, and for longitudinal cracks can result in turning and
flapping as shown in Figure 1 as reported by Maclin [1]. This behavior contains the
damage, vents the pressure in a controlled manner, and results in obvious damage which
can be subsequently repaired. Flapping was observed to occur reliably enough during tests
of thin skinned, relatively narrow-body fuselages that it was utilized as a fail-safe criterion
on the 707, 727, and 737 fuselages for regions excluding the joint areas. Similar
phenomena have been observed in unstiffened cylinders by Swift [2], who also reported
turning and cracking in an experimental fuselage with adhesively bonded stiffeners 3], and
Pettit [4], who observed crack turning and arrest in integrally stiffened fuselage structure
with transverse cracks.

These behaviors were observed in tests, but were never successfully modeled until
recently. Turning and flapping was observed in narrow-body aircraft, but not wide-body
aircraft like the 747 aircraft, and no one really understood why. Also, it was found that
aging aircraft develop multi-site damage, which can potentially alter the crack turning and
flapping performance [5]. The need for an accurate crack trajectory modeling capability
was evident.

In the last decade, a sequence of authors have studied the fuselage flapping phenomenon,
including Kosai et al [6], Miller et al [7], Potyondy et al [8], Knops [9], and Chen [10].
Beginning with Potyondy, an adaptive mesh finite element routine was used similar to that
proposed by Wawrzynek and Ingraffea [11] but extended to three dimensional shell
problems, which allows the trajectory of the crack to develop naturally in accordance with a
user-selected crack turning theory. Potyondy used the first order maximum tangential
stress theory of Erdogan and Sih [12] to predict the crack trajectory of an adhesively
bonded narrow-body fuselage panel tested at Boeing, as shown in Figure 2. He was able
to approximate the actual behavior fairly well in the gently curving region until the crack
grew near to the tear strap, but was unable to predict the path as the crack turned and grew
parallel to the tear strap, resulting in flapping.

The work of Kosai, Knops and others gave substantial evidence that to more accurately
model crack turning behavior in pressurized cylinders, a 2™ order theory was needed such
as that described by Finnie and Saith [13]. (Here, 2" order refers here to the inclusion of
the 2™ term, or T-stress, in the asymptotic stress field in the vicinity of the crack tip, which
is neglected in the Erdogan and Sih theory.) Knops was the first to implement this theory
in an adaptive mesh finite element code, yet despite the improved theory his results for the
Boeing narrow body panel test compare very closely with those of Potyondy. Like
Potyondy, he was unable to simulate the turning of the crack in the vicinity of the stiffener,
and the resulting flapping phenomena. Chen [10] also modeled the Boeing test panel using
an adaptive mesh scheme and a 2™ order theory that includes fracture orthotropy [14]
(fracture orthotropy referring to the variation of the fracture toughness with material
orientation, symmetric about two axes). His results for both isotropic and orthotropic
cases are also presented in Figure 2. Note that in his isotropic run, he was for the first time
able to simulate the turning of the crack at the tear strap. In the orthotropic case, he
matched the first part of the trajectory considerably better, but was still unable simulate
crack turning at the tear strap, because the crack was growing in the preferred direction of
the 2024-T3 fuselage skin, and effect of the T-stress was insufficient to turn the crack.
Despite this shortcoming, the ability to simulate crack deflection by a tear strap for the
isotropic case was a significant first.



While there were various differences in the finite element implementation, it appears that the
main difference in Chen’s isotropic analysis which enabled him to show turning and
flapping where Knops did not was the characteristic length, r,, chosen for use in the
analysis. Chen used a value of 0.09 inches which was found during finite element
simulations to correlate fairly well with crack paths observed in double cantilever beam
specimens reported by Pettit [4], whereas Knops used a value of 0.05 inches'. Attempts in
the literature to evaluate r, often give contradictory results, and the physical meaning and
phenomenological basis of this parameter has not been well understood (some might
question whether such a characteristic length in fact exists at all). One object of this paper
is to offer a physical explanation of the existence and character of the characteristic length,
and to provide an approximate means to estimate r, from more commonly available tensile
and fracture properties.

Also of importance is the accuracy of the T-stress calculation. Very recently [34], a high
polynomial order (p-version) finite element code implementation of a contour integral
solution for computation of the T-stress was utilized to obtain T-stress values of
unprecedented accuracy. Equally as important, an error estimation parameter was
developed to allow a quantitative estimate of the error associated with a given crack tip
discretization geometry (referred to hereafter as the crack tip rosette). As will be shown
herein, much of the error is of a systematic nature, and it is possible to calibrate a given
crack tip rosette geometry against known highly accurate solutions, thus enabling
correction of the error in the T-stress computation a posteriori..

2.0 REVIEW OF 2"° ORDER CRACK TURNING THEORY

The mixed mode expression in polar coordinates for the elastic stress field around a crack
tip (Figure 3) is given by (truncating after the second term of the infinite expansion given
by Williams [15])
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Where K1 and Kun are the mode I and mode II stress intensity factors (Figure 4), and the T-
stress is the constant, or far field stress component. A physical understanding of what the

T-stress represents can be revealed by examining the radial stress of Equation (1) at =17,
for which

' Actually, Knops is not explicit with regard to the value of r, utilized for 2024-T3. However, he did
quote a value for PMMA plastic plate of 1.3 mm (0.05 inches) based on the results of Ramulu and
Kobayashi [Knps68,11] . Kosai, Kobayashi and Ramulu [6] later gave the same value for 2024
aluminum, and it appears that Knops used this value for both materials.
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In the absence of the mode II loading, the T stress is simply the stress along the crack flank
immediately behind the crack. One could imagine that the T stress could be introduced into
a body with a straight crack by imposing a constant far-field stress of arbitrary magnitude
parallel to the crack without affecting the stress intensity factors. However, it is intuitively
apparent that if this load is sufficiently increased in tension, a propagating crack may well
want to turn and grow normal to this far field stress.

(4)

While many crack turning theories have been proposed, one of the most promising is the
second order maximum tangential stress theory [20,13,6], which assumes that the crack
will propagate in the direction of maximum tangential stress occurring at a material specific
radius, r,, from the crack tip. To maximize &, the derivative of equation (2) is set equal to

zero at r=r_, which can be rearranged to obtain the transcendental equation in terms of the
instantaneous turning angle, 6,

—25in&
EIL____.__ cose—‘—§1\/§r7600596
K, (3cos6, -1) 2 3K, (5)

which is plotted in Figure 5 in normalized format. Note that this theory predicts turning
(6, < 0) in a pure mode I environment subject to the criterion
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The common first order theory [12] can be obtained either by setting r.=0, or by neglecting
the T-stress, which yields from Equation (5)

K,  —sinf,

K, (3cosf,-1) e

This method does not require evaluation of the T stress, but as apparent from Figure 4, is
expected to lose accuracy in problems where substantial positive T stresses exist (as when a
crack approaches a tear strap or stiffener in a pressurized fuselage). It is further noted from
the foregoing that the effect of the T-stress vanishes unless the characteristic length is non-
zero.

3.0 THE CHARACTERISTIC LENGTH, r,

3.1 Literature Review



Irwin [16], Dugdale [17] and others gave approximate expressions for the size of plastic
zone in front of a crack tip in an elastic-plastic materials. Ingraffea [18] and others have
shown that due to microcracking and strain softening, inelastic zones also appear about the
crack tip in more brittle materials such as rock. There has been a general agreement in the
literature since that the characteristic length associated crack turning should be smaller than
the inelastic zones identified in these studies.

Rice and Johnson [19] discussed the role of various characteristic lengths associated with
microscopic failure mechanisms in elastic plastic materials, including the crack blunting
radius and void spacing, in the context of plain strain fracture problems.

The existence of the characteristic length associated with crack turning was proposed by
Williams and Ewing [20], who suggested that a crack might be assumed to propagate in the
direction of maximum tangential stress evaluated at a point a finite distance ahead of the
crack tip. As an estimate of the characteristic length for PMMA, they referenced a previous
work by Constable, Williams, and Culver [21] which identified equivalent flaw sizes based
on fatigue thresholds of in polyvinyl chloride of the order of 0.0025 inches. Constable
conjectured that the equivalent flaw effect might be associated with crazing.

Streit and Finnie [22] determined r, using photoelastic methods for 7075-T651 aluminum
plate to be 0.010 inches. They used the observed onset of path instability of an initially
self-similar crack as the basis for determining r,. They described r, as the distance at which
void growth or crack initiation will occur, referencing Rice and Johnson and others.

Using similar methods, Ramulu and Kobayashi [23] experimentally determined r, for
PMMA? to be 0.05 inches, which is quite a bit larger than had been previously expected.
Theocaris and Andrianopolis [24] independently obtained similar results. Kosai and
Kobayashi [25] later described r, for PMMA as “a material constant which specifies the
characteristic crack tip region in which the off-axis micro-cracks are triggered and
connected to the main lead crack tip”, similar to the void growth spacing assertion
mentioned previously.

Kosai, Kobayashi, and Ramulu [6] later estimated r, for 2024-T3 and 7075-T6 sheet to be
0.06 inches based on the lengths of micro-crack branches observed along dynamic fracture
surfaces of test specimens. This is considerably larger than the value given by Streit and
Finnie for 7075-T651 plate, but the method of determination of r, is completely different
than previous methods. Also, the reduced thickness of the sheet relative to the plate
material would likely have played a role.

Pettit [4], found that path instability occurred in 2024-T3® DCB specimens at values of r, at

least as high as 0.11 inches due to sensitivity of the crack path to small amounts of K;; (as
can be observed in Figure 4 near the bifurcation at r =r_), but that the crack turning radius
approached zero at r, = 0.05 inches, which was subsequently used as a (likely rather poor)

estimate of r,. Because imperfections or perturbations giving rise to small amounts of Kj;
can be found in any real specimen [14], the onset of path instability in nominally symmetric
specimens will always occur at an r, value in excess of r, thus casting uncertainty on any r,
values obtained in that manner.

2 Actually, the material used by Ramulu and Kobayashi is designated as “Homelite 100” which the
author understands is a commercial form of PMMA. Also, their experiments were dynamic in
nature, though they claimed that static values of r, would be comparable.

3 Actually, the material was of NASA vintage stock made to the earlier 24ST designation.
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3.2 Present Theoretical Development

The following development will be discussed in the context of plasticity, with the focus on
metallic materials. Nevertheless, the general principles described can also be applied to
materials that fracture by way of micro-cracking or other inelastic effects.

A simple tensile test of a strain hardening material yields the familiar engineering and true
stress-strain plots shown schematically in Figure 6 (the less familiar “Strain Softening
Zone” shown at the end of the curve will be discussed later). In accordance with a well-
known plastic instability theory attributed to Considere, the maximum load, F, occurs
when the specimen rate of area reduction equals the rate of strain hardening [25]

dF =odA + Ado =0 (8)
Rearranging,
do__dA_ 4
o A
do
—=0 9
de ©)

It is equally well established that the point of maximum load also defines the onset of
localized deformation or necking in the specimen. That this true can be clearly illustrated
by likening the specimen to a series of nonlinear springs of unit length, as illustrated in

Figure 7. Each spring may be considered to have a local spring constant 3—F As the
£

series is stretched, all the springs elongate in proportion to their compliance, g—;— As the

stiffness of any one of the springs becomes zero, then its compliance becomes infinite, all
the other springs unload, and only that spring elongates. All along the specimen a
compliance of zero is approached as the maximum load is approached, but due to some
imperfection one segment reaches that point first, and necking begins there.

Once localized deformation has begun, the location of the future failure of the specimen has
been determined. As fracture develops, the processes which occur after the onset of
localized deformation may differ from material to material, but the location of fracture is set
in a macroscopic sense at the onset of plastic instability.

Assuming strain hardening of the exponential form,

o =ke™ (10)

and substituting this into equation (9), one obtains the true plastic strain at the engineering
ultimate stress

Eyt =m (11)



Noting that S = o e € (where e is the base of the natural log) we obtain from (10) and (11)
the engineering ultimate stress of the material in terms of k and m

Sy = km™Me™ (12)

Defining o, as the 0.2 percent offset yield strength, we have k=0, (.002)™ and

O, _(.0026)“‘ (13)
Sult m

Swift [26] developed similar relationships for plastic instability and necking in sheet
material under tensile plane stress conditions. Necking is also observed in front of the
crack tip, and as will be shown, may play a significant role in crack path formation in sheet
metal.

A crack growing in a thin sheet is illustrated in Figure 8, with the necking region shown in
the vicinity of the crack tip well within the bounds of the plastic zone, since necking must
occur after some plastic deformation as in the tensile test. It is further asserted based on
observation that the crack will eventually develop along the necking line, and that the future
crack path is therefore known out to the onset of necking (barring some abrupt change in
the load environment). In order to support this notion, it is observed that the sectional load
(load/in) distribution ahead of a propagating crack and normal to the future crack path

(shown as 6, in Figure 8) must have a maximum a finite distance away from the crack tip
as shown schematically in Figure 9.

McMeeking [27], using nonlinear finite element computations, has shown this to be true
for the self-similar plane strain stationary crack due to crack blunting. The sectional load
distribution of Figure 9 is also supported by the argument that all real materials must exhibit
strain softening behavior across any real failure interface down to zero load* as asserted in
Figure 6.

It is now observed that in a manner equivalent to the Considere criterion mentioned
previously, that the onset of localized deformation coincides with the instability point
defined by

dN, =0 (14)
where N, is the sectional load normal to the future crack path. For elastic plastic strain

hardening materials, this point marks the onset of plastic instability, whether in plane strain
or plain stress. The path of localized deformation marks the future crack path just like

4 Strain softening might alternately be described as the advanced stages of deformation
localization, including void growth and coalescence for metallic materials. The interface has finite
residual strength until the last two atoms of a given interface separate, (and even as they separate,
they do so with a smooth load/displacement relationship). Given that the atomic bonds, even in a
tensile test, must break in some sequence, and cannot separate at exactly the same moment, it
follows that in the limit of absolute displacement control the failure of any interface could be
defined as a quasi-static progression of damage as the load drops smoothly (at some scale) to
zero. The failure interface of a slow stable tearing interface approaches this limit of absolute
displacement control [18]



necking in the tensile specimen predetermines the eventual failure location. The instability
point may thus be considered as the end of the known future crack path, the point where
the material is “deciding” where the crack will go next. Presumably as the crack grows the

instability point would migrate to the location where N, is maximized. Thus the distance
from the physical crack tip to the instability point, [, might be considered to physically
represent the characteristic length associated with crack turning.

Unfortunately, evaluation of the generally curvilinear /. is a daunting task. For the
purposes of this study, it shall be assumed to be straight, and of approximately constant
length, r, for a given material and thickness. In order to obtain an estimate of that length,
the simplest case of a self-similar crack will suffice. For the plane strain case, McMeeking
and Parks [28] have already shown that the maximum stress occurs for materials with
moderate strain hardening at a distance approximately given by

= (15)
[¢]

Where for small scale yielding and mode I loading, the strain energy release rate J, is
related to the stress intensity factor by

2
Ki
J=—1 16
B (16)
Thus for plain strain we may write
2
K
r = —L (17)
o,E

It should be cautioned, however, that while this expression is a reasonable estimate for
plain strain with T=0, it has been shown [40] that the distance to the maximum stress point
varies with the T-stress, particularly if it is negative.

For the plane stress case, thickness strain (necking) is possible. We can thus rewrite (14)
as

dN, =dN9=tdO'9+O'9d[=0 (18)
d t
4% _ _dt_ 4, (19)
Og t

Assuming incompressibility,

—de, =dey(1+p) (20)
€
where p=—L
P P

Using the Von Mises yield condition, the differential equivalent strain can be expressed as

7
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Combining (19), (20), and (21) and noting that for a constant p, the equivalent stress
conforms to the equality d—_o-— = 49 we obtain

N o Og
5 _ 0x/§(1+p2) 22)
de 2(1 +p+p )

Assuming an exponential strain hardening relationship for the equivalent stress and strain
similar to (10), we obtain the critical strain and stress at the instability point.

B 2m(1 +p+ p2)
Ecrit = 31+ p) (23)
2m(1 +p+ pz) " 24)

5. =k
Gcnt \/§(l+p)

Assuming the necking region in plane stress is somewhat larger than the crack blunting
effected zone in plane strain (which will be observed hereafter), we can obtain an estimate

of p based on the Hutchinson Rice Rosengren (HRR) asymptotic field for plane stress
cracks in strain hardening materials 29,30, 31]. This inherently involves the assumption
of proportional flow, which for a propagating crack is less than desirable. Directly ahead
of a straight propagating crack, the flow should be fairly proportional, but the deviation
from proportionality will have an unknown effect on the results forward of the crack. Also
of concern is the fact that the HRR field is derived based on the assumption of small strain
theory. The very existence of plastic instability is by definition a large strain effect.
Nevertheless, McMeeking and Parks did observe in their analysis that the plane strain HRR
field was valid up to the point of maximurn stress. Note also that true stress and strain and
engineering stress and strain are fairly close up until plastic instability for most structural
materials. Proceeding with the above cautions in mind, the effective stress given by the
HRR solution, written here in terms of the far field stress intensity factor, is

1

2 n+1
5 =00 —— " 0e(n.60) (25)
ooyl r

For 8 =0, Hutchinson normalized the G, term to unity for the plane stress case. The

Ramberg-Osgood material parameters ¢ and n are related to the exponential strain
hardening parameters from Equation (10) by

1/n
k=g (-1 n)(E) (26)

a



m=1/n @27

Hutchinson gives numerical results for I, and p which are functions of the exponent n.
For the propagating crack, we may assume that K is equal to the propagating value, which
for stable tearing may be denoted K . We may thus approximately equate (24) and (25) at
r=rt, , and to obtain after some rearrangement

(n+1)

n 2
rcz(l@ O'Oan(1+pz)] [ K¢ } %)
2 E(l+p+p°) aosl,

Equation (28) can be combined with equations (12), (26), and (27) to obtain an expression
in terms of the engineering ultimate strength

(1+1/n)
(B _a+p n | Kg (29)
¢ Inel/n SultE

2 (1+p+p?)
For n<7, p makes little contribution, and I, is nearly linear at least up to the maximum
value of n=13 given by Hutchinson, and probably well beyond. Thus, in this range we
can further approximate with no significant loss of accuracy

(1+1/n) 2
- “(ﬁ ol | o (30)
2 (3.38-.039n)e SuiE

If a suitable value for n is not available, one can obtain an approximation using the ratio of
yield and ultimate strength from the implicit equation

Jo _(.002ne)''" 31)

Suit
which was obtained by combining equations (13) and (27).

A predicted r, value for 2024-T3 alloy is given in Table 1 based on Equations (30) and
(31). The mechanical properties are B basis values from MIL-HDBK-5G [32], and the
fracture toughness the maximum R-curve value obtained based on 48 inch wide R-curve

panels reported by Gruber et al [33]. The predicted r, value is in satisfactory agreement
with the value chosen by Chen to match observed crack paths. One caution, however, is
that the value of Kc used is only reached after 4-5 inches of stable tearing, whereas the
coupon test data achieved crack turning after less than an inch of growth, at which point the
characteristic length associated with necking should have been considerably smaller.

Table 1. Calculation of r_ for 2024-T3

.063 inch, 2024-T3 clad r
S, Sun n K, E K.%S,E Plane cStre:ss
(ksi) (ksi) (ksiVin) | (ksi)
LT | 42 62 8.04 180 10500 | 0.050 0.098




4.0 CALCULATION OF ACCURATE T-STRESS VALUES
4.1 Literature Review

T-stress calculations have been performed by various authors. Larsson and Carlsson [35]
evaluated the T-stress using finite elements. Leevers and Radon [36] directly imposed the
infinite series solution given by Williams [15] in a variational approach to obtain estimates
of K; and T simultaneously. They gave estimates of the T-stress in the form of the
dimensionless parameter B, where

_T+a
Ki

B (32)

Based on the convergence observed, Leevers and Radon estimated the error in the B values
provided to be less than three percent. Sham [37] used 2™ order weight functions and a
work conjugate integral to calculate T-stresses in various specimen configurations. Fett
[38, 39] introduced a Green’s function approach to calculate T-stresses, and analyzed
numerous configurations. A more approximate displacement correlation method was
outlined by Al-Ani and Hancock [40] which is nevertheless easy to implement in plate and
shell codes, and has been utilized in various forms by other authors [4, 9, 10].

Cardew et al [41] and Kfouri [42] computed the T-stress using a modified J-integral based
on unpublished work of Eshelby, and also gave results for selected specimens based on
finite element analyses. Another type of path independent integral based on the Betti-
Rayleigh reciprocal theorem has also been proposed [43,44], and shown to be
mathematically equivalent to the J-integral method by Chen et al [34]. By implementing the
contour integral solution into a high polynomial order (p-version) finite element program,
Chen obtained T-stresses that were claimed to be numerically exact to six significant
figures. The numerical accuracy was verified by way of an exact benchmark solution (a
crack tip and surrounding region with the exact boundary conditions applied corresponding
to arbitrary combinations of K;, K;;, and T) and a theoretical error relationship

_ K
er =Tpg —T=ép—= (33)

Ny

where e is the error in the computed T-stress, r, is the characteristic dimension of the
integration zone (typically taken as external radius for circular zones, half side length for
square zones), and é7 represents the discretization error in the vicinity of the integration
Zone.

4.2 Error Correction

Equation (33) was derived by recognizing that the stress contribution of the singular terms
in the stress field will converge far slower than the contribution of the non-singular terms,
leaving an error in the coefficients of all terms proportional to the coefficients of the

10



singular terms®. The square root term in the denominator was included due to dimensional
considerations, consistent with the form of Equations (1-3). Based on the convergence rate
argument, terms of higher order than T are expected to contribute little error, though this
was not checked in the benchmark example, since higher order terms were excluded.

Note that unlike the error estimation expression given in [34], Equation (33) is given with
no absolute value signs to enforce that the error measure always be positive. As shown in
Figure 10 for the integration path and rosette geometry of Chen, ér is virtually constant
and characteristically negative® for a element polynomial order, p, above 12. The error is
thus systematic, and can thus be corrected as shown in the next section. The relative error
of the T-stress can be expressed in a manner consistent with the characteristic sign of the
error.

er ~

[4 =_—=¢ KI
Tet "1~ TG

(34)

The assertion that the relative error scales with K/T \r, is supported by the fact that
geometrically similar finite element models that differ only by a scaling factor (which also
implies that the integration zone is likewise scaled) will have the same relative error.
Considering the rosette as a finite element model with imposed boundary conditions
representing K, and T, and recognizing the similarity of all K and T fields relative to a
characteristic length (K/T)?, one may therefore conclude that the combination of such a
field with a rosette model of fixed geometry and scale relative to the field characteristic
length will be similar (and thus have comparable relative error) to all other rosette/field
combinations with the same relative scaling ratio.

Because é; represents the discretization error in the vicinity of the integration zone, it
should thus be relatively constant so long as the mesh geometry, or rosette, within the
integration zone is geometrically similar for all problems. The mesh geometry outside of
the integration zone is of secondary influence, and may change from problem to problem,
thus its effect will be treated as a probabilistic source of error. Nevertheless, provided that
the external mesh is reasonably proportioned, the error introduced should be relatively
small.

Not noted in the previous paper is the fact that the err or in K| likewise scales to itself,
eKI =KXFE_KI=EK1KI (35)
No characteristic length is necessary because all K fields are similar without respect to a

characteristic length. Thus, the relative error in K| is approximately constant for a given
integration path/rosette geometry

5K, was also found to pollute T slightly, but at a level orders of magnitude lower than K. It would
thus likely have even a lesser effect on K;, thus it is hereafter neglected. In nearly pure mode I
loading, however, the effect of K, might be significant, and could be normalized in a similar
manner.

6 Note that the characteristic sign consistency of the error may not hold if the crack tip elements
are included in the integration zone, as will be explained. Also the sign of the error may change
with p.
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_ eK[ -
eKIrel - —K_I_ - eKl (36)

As shown in Figure 11, e,,is constant and characteristically positive for the integration
path/crack tip rosette geometry of Chen p>9, after which the benefit of increasing p is lost
for this rosette geometry, and error of the opposite sign appears to take over. A similar
correction is surely possible for K, but is not discussed at present.

If the sign of the error is always the same, Equations (33) and (36) can be utilized to correct
the finite element solutions for K; and T. Designating T, and K, as the adjusted values

. K
T = Tadj =TFE -eT—\/% (37)
1

K; = Ky = Kigg - €k, K1

~Kypg /(1+k, )

The adjusted values so obtained will still vary from the exact, because in practice é and
ex , are distribution functions, and can be characterized with mean values and standard

deviations. As mentioned previously, the random component of the error may be
associated with mesh variations outside the rosette and solution oscillation at the crack tip.
In fact, if the equivalent domain integrals for K; and T are evaluated including in the domain
the crack tip elements themselves, the random component of error may be larger than the
systematic error, resulting in overall errors which may vary in sign, and are thus less
correctable. For this reason it is recommended that the crack tip elements be excluded from
the integration zone.

(38)

In order to evaluate Equations (37) and (38), one must have an estimate of the calibration
factorsér and eg I’ For individual cases with known exact or highly accurate reference

solutions, sample values of é7 and €k, can be obtained as

N K

ér =(Tgg - T) Trl_ (39)
1

éx, =ex, =Tpg - T (40)

The mean and standard deviation can estimated based on models of a sampling of reference
solutions, preferably over a range of stress intensity factors and integration radii. For the
data in Figures 10 and 11, three samples of each error parameter were evaluated at each
polynomial order p. Average values of the correction factors are given in Table 2 given to
eight computed places, which are likely all significant for p=1, but perhaps only one digit is
significant at p=12.
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Table 2. Average Values of the Correction Factors

P e, er

1 4.7282230E-01 -1.8830976E-01
2 1.0063271E-01 -2.7370718E-02
3 2.1770302E-02 -5.8434480E-03
4 4.5650887E-03 -6.7037228E-04
5 9.1459033E-04 -1.9170107E-04
6 1.7818900E-04 -5.0844804E-05
7 3.2591667E-05 -7.4061435E-06
8 4.3786667E-06 -2.3991630E-06
9 -3.1936667E-07 -4.2137896E-07
10 -9.3926667E-07 -9.3609849E-08
11 -8.1720000E-07 -2.1412723E-08
12 -6.4710000E-07 2.5544523E-09

Using these values, the solutions were corrected resulting in the miniscule errors in T,q; and

KI,; indicated by the error bands in Figures 10 and 11. Note that the error obtained in this
manner is independent of p. Nevertheless, this example is not realistic because the models
were completely similar—not just similar in the vicinity of the integration zone.

In order to obtain a more realistic representation, K; and T estimates from the DCB
specimen geometry presented in [34] was adjusted according to Equations (37) and (38) to
obtain the data given in Figure 12. Each analysis used the same six-tiered rosette used in
the benchmark example, with the integration zone encompassing the first layer of elements
outside the crack tip elements as before, thus the correction factors given in Table 2 were
applicable. As expected, the benefit of correction in this real case is nearly as good as for
the benchmark solution. Nevertheless, the improvement in the accuracy of Kl is typically
an order of magnitude or more, though not as good as at low p values. The improvement
in T due to correction is about half an order of magnitude.

The rosette geometry utilized, however, is very poor at low p values, which are common in
available finite element codes. FRANC2D, a two-dimensional fracture code developed at
Cornell University, utilizes a more suitable crack tip rosette made up of eight six-node
quarter-point singular elements as shown in Figure 14. FRANC2D is being used as a
platform to develop crack turning analyses, thus it is of interest to calibrate the rosette for
T-stress calculations. Due to the use of singular elements, the accuracy of stress intensity
factors calculated by FRANC2D is typically within one percent, thus no correction is
necessary there.

Figure 14 shows a rosette subdivided once with the inner radius equal to one-half the outer
radius. The standard version of FRANC2D allows the user to manipulate the number of
subdivisions and the subdivision ratio. A subdivision ratio of 0.5 was selected for this
study. Also, the version of FRANC2D utilized has been updated to include the contour
integral solution for T. It was also found that FRANC2D models cracks with a small initial
crack opening, which causes numerical difficulties when evaluating the contour integrals.
As a temporary solution, gap elements with zero interference were specified to close the
crack prior to running the analyses.

13



In order to provide data from which to evaluate €, several runs were made, analyzing
selected specimens for which highly accurate reference solutions were obtained by Chen et
al. The error in the computed T-stresses is shown in normalized fashion in Figure 15. For
this rosette geometry/integration path of Figure 14, it was found that

ér =-0.00825%.00255
(Mean) (Std. Deviation)

A plot of the corrected data with lines denoting various confidence levels is given in Figure
15. The average error (50% confidence level) of the corrected solution was about on fifth
of the original error.

5.0 CONCLUSION

The characteristic length associated with crack turning, r,, has been characterized as the
distance ahead of the crack tip at which plastic instability occurs for both plane strain and

plane stress fracture problems in strain hardening materials. An estimated plane stress r
value has been determined for 2024-T3, and compares favorably with a recent value given
in the literature which results in good correlation with test data. Nevertheless, due to the
many severe assumptions associated with the plane stress solution caution is recommended
with regard to its use pending further evaluation.

An error correction methodology has been developed for the T-stress, which can also be
applied to stress intensity factors. With this methodology, the accuracy of a contour
integral based T-stress algorithm has been substantially increased, and an estimate of the
remaining error is provided.
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Figure 2. Correlation of Crack Growth Simulations of Various Investigators (from [10])

19



Or

Figure 3. Polar Coordinate System About a Crack Tip, also Showing Physical Meaning of
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Figure 4. Mode I and Mode II Loading of a Cracked Body (Shown with Positive Sign)
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Abstract

Elastic-plastic Crack Tip Opening Displacement (CTOD) criteria proposed for crack
propagation and turning [1,2,3] are examined in the context of linear elastic fracture
mechanics. In particular, the use of the CTOD as a crack turning criterion is discussed as
an extension of the mode I dominant criterion of Cotterel and Rice [4] by simulating
plastic deformation via a virtual crack kink which opens in pure mode I or pure mode II.
The mode I dominant case is found to result in a crack turning theory similar to the
second order maximum tangential stress theory with a transition to mode II deformation
anticipated under certain conditions.

INTRODUCTION

Crack turning has been studied by many investigators [5], and is well recognized as a
potentially important phenomenon in structural applications, such as crack turning and
flapping in aircraft fuselage structures [6, 7]. Crack path prediction using linear elastic
maximum tangential stress theory [8, 9] has been most commonly used in structural
analysis. For crack turning and flapping phenomena and other problems, the effect of the
second order, or T-stress term in the asymptotic stress field has been shown to be very
important [10, 11]. Approximate theories have accounted for the directional variation of
fracture properties in anisotropic materials [12, 13]. Inclusion of the T-stress term in the
linear elastic theory requires the use of a material dependent characteristic length parameter,
r,, associated with the process zone size. Because the process zone presumably sizes with
the plastic zone, it follows that the effect of the T stress will increase with the extent of the
plastic zone. This observation has been used to explain quantitatively why slow fatigue
crack growth turns more gradually than static tearing of thin aluminum sheets {11] .

As computational hardware and software have become increasingly powerful, nonlinear
finite element analysis of complex structures has become more viable, leading to an
increased emphasis on elastic-plastic methods to predict crack propagation and trajectory in
situations where the effects of plasticity are potentially significant. To date these efforts
have focussed on isotropic materials. Early work in this field showed that plasticity can
effect the crack trajectory [14], and supported a notion that crack propagation and trajectory
could be correlated with critical CTOD values [1, 2]. Sutton et al [3] recently proposed
curves based on results from a small scale yielding (SSY) boundary layer crack tip model
and laboratory experiments which can be used to infer the crack growth direction from the
ratio of the mode I and mode II CTOD components. The curves include a transition from
mode I to mode II dominated crack extension that has been observed by previous
investigators [2, 15], and were used to predict stable tearing crack paths in various
specimens, with very encouraging results.



The CTOD crack trajectory curves appeared to be independent of the T-stress [3], and yet
seemed to adequately capture the small turning radius of statically tearing cracks in a high T
stress environment. Thus, questions were raised about the influence of the T-stress on
crack trajectory, and how or if its effect is captured by the CTOD approach. In an attempt
to address these issues, the CTOD method is examined from a surrogate linear elastic
standpoint, once again including the effects of plasticity and the T-stress by virtue of a
characteristic length.

2P ORDER LINEAR ELASTIC SURROGATE FOR ELASTIC-PLASTIC THEORY

Consider a lead crack under plane stress conditions with a plastic zone as shown in Figure
1a. Compared to an elastic crack, the plastic zone results in additional deformation that can
be approximated by a virtual elastic crack kink as shown in Figure 1b. For self-similar
crack growth, Wells [15], used the Irwin plastic zone correction as an approximation of the
effective elastic kink length to obtain an estimate of the CTOD. While the appropriate
choice of length may remain in question, it is not unreasonable to assert that for a given

material and loading, there is a unique kink length, b, and orientation, 6, which will best
simulate the deformation field as one moves away from the crack tip into the elastic
region'. It is further postulated that a crack kink so defined would provide a reasonable
approximation of the future crack trajectory. For a crack propagating under steady-state
conditions, b, would be expected to assume a constant, material-dependent value.

As the case of perfect elasticity is approached (as for so-called brittle materials, and also
approximately for slow fatigue crack growth), the length of the virtual kink necessarily
vanishes. In this limiting case, Cotterel and Rice [4] concluded that the crack propagates in
pure mode I, which is equivalent to the criterion K, =0. For the finite virtual kink, it is not
clear that this will continue to be the case, and based on the experimental observations [2,
15], depending on the loading conditions, cracks are observed to develop trajectories
corresponding either to pure mode I or pure mode II crack opening. For the time being, it
will be assumed that the virtual kink tip will operate at pure mode I, but the possibility of
pure mode II propagation will also be considered.

Isida and Nishino [17] give a solutions for a crack in an infinite plate with a kink at one end
which can be superimposed to obtain results for general K, K, and T loading. The stress
intensity factors at the kink tip, k,, and k;, may be expressed as

k= FOK; + Ky - FPT\ma

ey
ky = FPK + Fy Ky - FPTma

Where a is the crack length, and F,“ are functions of the kink angle, 6, and the normalized
kink length, b/a. The crack length parameter can be eliminated by normalizing in the form

' It is suggested for future study that the virtual crack kink dimensions be selected to give an
equivalent J integral (evaluated at a radius somewhat large compared to the kink length) to the
elastic-plastic crack.
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Values of the crack propagation angle, 6, , can be obtained by varying 6 to enforce K, = 0

for various combinations of K,/K,, andT, as presented in Figure 2a. Also shown for
comparison is the 2™ order maximum tangential stress theory in normalized format [9, 7,
11] with its characteristic length, r,. Note that the two theories are nearly equivalent
(though not identical) if one recognizes that the characteristic lengths differ at the
bifurcation by a constant factor,

b.=2.21r, 4)

Considering that the 2™ order maximumum tangential stress theory is well regarded for its
ability to predict physically observed phenoma, this similarity is encouraging. For the ideal
linear elastic case, b,=0, and the crack turning criterion becomes a function of K, /K,
independent of the T-stress. This is plotted in Figure 3 in terms of the crack tip opening
displacements using the notation of Sutton [3]

a= arctan(&) (5)

D,

Where D, and D , are the mode I and mode II components of crack opening, with the
observation that for the linear elastic case, D,/D, = K,/K,.

For the kinked-crack representation of the elastic-plastic crack tip, the crack tip opening
displacements may be approximated as indicated in Figures 4a and 4b, depending on
whether the virtual crack is assumed to develop in pure mode I or pure mode II. Assuming
the CTOD is measured in a finite element simulation some small distance, d, behind the
physical crack tip (the physical crack being represented by the base of the kink), the
following relations may be obtained.

Dy —sin@,

= for a pure mode I kink 6
D; cosB,+d/b, P ©

~—tan@, (approximation for d/b,>0) (6b)
Dy _ cotd, for a pure mode II kink N

I



Clearly these equations are approximate, but are most accurate and meaningful for small
d/b.. Asd/b, becomes large, D,/ D, must approach the elastic K, /K, of the physical crack
tip, and the effect of plasticity and the T-stress on the turning angle is lost. In the limit as

d/b,~>0, the Equations (6,7) simply state that for mode I dominant growth, the crack grows
perpendicular to the CTOD, and for mode I dominant growth, the crack grows parallel to
the CTOD. Based on the linear elastic infinitesimal kink theory, no combination X, and X,
at the tip of the unkinked crack results in a pure mode I kink at an angle above 74.45
degrees. The theory predicts this limiting value only when the lead crack is loaded in pure
mode II (the corresponding value predicted by the maximum tangential stress theory is 70.5
degrees). With a finite (virtual) kink length, the limiting value becomes a slight function of
the T-stress, but only at very long kinks or very high T-stresses. If, as postulated for
isotropic materials, the virtual kink must be pure mode I or pure mode II, then one might
expect that the crack would transiton to a non-mode I failure at kink angles approaching
74.45 degrees. Sutton observed a trasition to mode II failure at kink angles of about 70
degrees in 2024-T3 aluminum, under partially mode I loading conditions. Note however,
there appears to be no transition whatsoever in materials such as plexiglass, which under
pure mode II loading have been observed to kink consistently at angles very near the
maximum stress theory value of 70.5 degrees [18].

Sutton [3] reported 2-D simulations’ using an elastic/small-deformation plasticity model of
a edge crack in a 30.4 inch radius circular plate of 2024-T3 aluminum. The crack tip was
centered on the model, and traction boundary conditions were applied representing various
amounts of K, K;; and T. For a given loading, the CTOD components D, and D, were first
measured at a distance d=0.04 inches behind the crack tip, after which the crack was
extended 0.0076 inches as a physical kink in several trial directions to find the kink angle,

0, that resulted in the maximum total CTOD a small distance back from the kink tip. The
total CTOD in this case is given by

CTOD,;y =67 + 62 (8)

where &, and §, are the CTOD components near the kink tip. Sutton found that the kink
orientation that produced the maximum CTOD also produced nearly pure mode I or mode II
displacement near the kink tip, which further supports the foregoing assumptions with
regard to the mode mixity of the virtual kink.

With the plane stress plastic zone for 2024 on the order of inches, it is expected that d/b, for
Sutton’s model is sufficiently small to allow the tangent approximation of Equation (6b).
Equations (6b) and (7) are compared with test data and CTOD-based crack turning angle
data Figure 3, showing good correllation for both mode I and mode II cases.

DISCUSSION

Note that the development of Equations (6) and (7) makes no assumption with regard to the
T-stress, or even K, or K,,. The primary assumption is that the opening of the virtual kink
will be either pure mode I or pure mode II. Inasmuch as Figure 2a is also based on pure

2 Several of the details given here were not included in the referenced paper, but were provided
via private correspondence with Dr. Sutton.



mode I opening of the virtual kink tip, it is clear that several different combinations of K,
K,, and T acting about the physical crack tip can result in the same kink angle. Thus, it
appears that D ,/ D, measured near an elastic-plastic crack tip will be fairly uniquely related

to 8, , but will not be uniquely related to K, /K, if plasticity is significant, and the T-stress is
substantially non-zero.

Also worth mentioning is the likelihood that even as the crack tip nears a stiffener or other
geometric feature, the virtual kink might still open in pure mode I or mode II. While the
plastic zone shape would be distorted by the presence of such irregularities (which would
likely affect the crack turning angle), the assumptions associated with the derivation of
equations (6) and (7) are still valid with sufficiently small 4, and the crack trajectory should
remain a substantially unique function of D,/ D, .

It is significant to observe that the driving features of the crack turning phenomenon appear
to be adequately represented by a small deformation theory finite-element method used by
Sutton. In particular, such a method neglects near-tip strain localization such as necking or
crack tip blunting, and void growth and coalescence. It thus appears that the length scale
associated with crack trajectory is larger than the length scales associated with these near-tip
phenomena.
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Figure 1. Crack Tip Plastic Zone Deformation Simulated by an Effective Virtual Kink
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